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of pregnant females were not included in the averages for their respective
age groups. Adult weights will be seen to be essentially alike for the
6- and 12-unit levels, and relatively little higher than for the corresponding
animals on the intake level of 3 units per gram. The coefficients of varia-
tion of the body weights, as distinguished from gains, were small in all
cases.

Much more striking are the facts brought out in the lower section of
table 1 which show that in the period of rapid growth, between the 28th
and 56th days of the life of these rats, the coefficient of variation of the
individual data of the respective groups or series are, in both sexes, much
larger for those on the 3 I. U. than for those on the 6- and 12-I. U. levels
of vitamin A per gram of food. Vet rat families in our colony are thriving
in the 58th generation on the diet containing even the lowest of these three
levels.

We conclude that while 3 I. U. of vitamin A per gram of air-dry food
(or 0.8 1. U. per food calorie) fully meets the requirements of adequacy,
as the word is commonly understood, there is a somewhat higher and a
much less variable rate of growth when the level of vitamin A intake is
twice or four times higher.

This stabilizing effect appears to be a further advantageous influence of
the same liberal levels of dietary vitamin A that have previously been
shown! beneficial to adult vitality and length of life.

* Aided by grants from The Nutrition Foundation, Inc.
1 Sherman, H. C., Campbell, H. L., Udiljak, M., and Yarmohnsky, H., these Pro-
CEEDINGS, 31, 107-109 (1945).
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Communicated April 30, 1945

Sylow’s theorem in the theory of finite groups consists of the following
three parts: If the order of a group G is divisible by p™, p being a prime
number, but not by a higher power of p, then G contains at least one sub-
group of order p™, and if it contains more than one such subgroup all of
these subgroups are conjugate under G and their number is of the form
1 + kp. The first of these three parts can be proved independently of the
other two parts. In fact, these two parts follow almost directly from the
first of these three parts. Hence this part will receive most of our attention

in what follows.
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A Norwegian mathematician, L. Sylow (1832-1918), was the first to
publish this general theorem. It appeared in the French language in a
German mathematical journal called Mathematische Annalen, 5, 584—594
(1872). This was about two years after the first treatise on group theory
was published by a well-known French mathematician, C. Jordan (1838-
1922). The title of this very influential work is Traité des substitutions
et des équations algébriques (1870). Various parts of this standard work of
XVIII + 667 large pages could have been much simplified by the use of
Sylow’s theorem if it had then been known. Important steps toward
its proof had been taken earlier. In particular, the noted French mathe-
matician, A. L. Cauchy (1789-1857), published a proof of the fact that if
the order of a group is divisible by a prime number then the group contains
a subgroup whose order is equal to.this number and hence the theorem
has often been called the Cauchy-Sylow theorem. This special case had
been stated without proof by E. Galois (1811-1832).

When G is an abelian group it can be proved very easily that Sylow’s
theorem applies to it by using the following obvious theorem relating to
the order of the product of two commutative group operators. This order
is the product of all the powers of the prime numbers which appear to a
higher power in the order of one of these two operators then in the order
of the other and the product of divisors of powers of prime numbers appear-
ing to the same highest powers in the orders of the two given operators.
The same theorem may be expressed by saying that if p* is the highest
power of p which divides the order of one of the two given operators but
is not a divisor of the order of the other then it is a divisor of the order of
their product but if p® is the highest power of p which divides the orders
of both of these operators and neither of them is divisible by a higher power
of p then the order of their product is divisible by no higher power of p
than p®. The product of all such powers of prime numbers is the order of
the product of the two given group operators.

From this theorem it follows directly that if none of the operators of the
abelian group G has an order which is divisible by p then the order of G
cannot be divisible by p and if the order of such an operator of G is divisible
by p this operator is the product of an operator whose order is a power of
p and an operator, which may be the identity, whose order is prime to p.
Hence all the operators of G may be supposed to be so represented that
some of them have orders which are powers of p while the rest of them
have orders which are prime to p. The former will therefore generate a
subgroup whose order is a power of p while the latter generate a subgroup
whose order is prime to p and G is the direct product of these two sub-
groups. The order of the former subgroup is the highest power of p which
divides the order of G and this is therefcre the Sylow subgroup of order
$™ contained in G. ' : ’
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It remains to consider the case when G is non-abelian, and it may first
be noted that it may be assumed that G is one of the non-abelian groups of
smallest order to which Sylow’s theorem does not apply in case it does not
apply to G. If G contains more than one invariant operator all of its
invariant operators generate an invariant subgroup of G. Since both the
order of this subgroup and the order of the corresponding quotient group
are smaller than that of G it follows that Sylow’s theorem applies to both
of them and hence it also applies to G, which is contrary to the stated hy-
pothesis. It therefore follows that it may be assumed that the identity
is the only invariant operator of G.

All the operators of G can be arranged in sets of conjugates such that
no two sets have any operator in commion and that the identity alone con-
stitutes one of these sets. Each of- the operators of one of the sets is
transformed into itself by all the operators of a subgroup of G and the
number of the operators in the set is equal to the order of G divided by the
order of a subgroup of G. Hence there results the following equation:

g=1l4+a+g+ ... + g

In this equation g represents the order of G and g, g, ..., g, represent
the numbers of the operators in the given sets of conjugates. It should be
noted that each of the numbers gy, g, ..., gy usually exceeds unity and is
equal to g divided by the order of a subgroup of G.

Since p divides g it cannot divide each of the numbers g1, g2, ..., gn
Hence there is at least one of these numbers which is prime to p and each
of the corresponding subgroups must have a common order which is
divisible by p™. These subgroups are found in G and hence G contains
a subgroup of order p™. To prove that all the subgroups of order »™ in
G form a single set of conjugates it may be noted that a given one of these
subgroups could not transform into itself another one of them since g is
not divisible by a higher power of p than p™. Therefore it results that if
there were more than one set of such subgroups it would follow that if
those of a set were transformed by one of their conjugates the number of
the subgroups in the set would be of the form 1 + kp and if those of the
same set were transformed by one of those in another set of conjugates this
number would have to be of the form kp. Since this is a contradiction it
has been proved that all these subgroups of order p™ are conjugate under
G and that their number is of the form 1 + kp.

The equation .

g=14+ag+ g+ ... + 2 .

is fundamental. Whenn =1 ,» G is obviously the group of order 2. When
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n = 2 G is eithet the group of order 3 or the symmetric group of order 6.
When G is any abelian group # is-clearly equal to g — 1 and hence it is
only necessary to consider the cases when G is non-abelian. In all of these
cases 7 is less than g — 1 and at least equal to the number of the distinct
prime numbers which divide g. If it is equal to this number g cannot be
divisible by the square of a prime number and hence it contains then an
invariant subgroup whose order is the largest prime number which di-
vides g. Hence the symmetric group of order 6 is the only group in which
7 is no larger than the number of the distinct prime numbers which divide
g when G is a non-abelian group.

For every prime divisor p of g there is at least one of the numbers g,
g2, - .., ga Which is prime to p and the sum of all such numbers when this
sum is increased by unity is divisible by p. This includes the well-known
theorem that every group of order p™ contains at least p — 1 invariant
operators besides the identity, since the number of the operators in every
set of conjugates of such a group is divisible by p whenever the set contains
more than one operator. Hence theformulag=1+ g1+ g+ ... + g,
which is useful in proving Sylow’s theorem is also useful in the study of
the prime power groups. A necessary and sufficient condition that G is
an abelian grotip is that each of the numbers g, gs, ..., g, is unity and
hence # has then its maxinial value.

When G is non-abelian the maximal value of # will clearly result when
the number of the invariant operators of G is as large as possible and each
of the non-invariant operators of G has only two conjugates under G
provided that both of these conditions can be satisfied at the same time.
This can be done in the present case. In fact, the largest number of the
invariant operators of a non-abelian group can clearly not exceed the order
of the group divided by 4 and when it is equal to this number the com-
mutator subgroup of the group is of order 2 and hence each of the non-
invariant operators of G has exactly two conjugates under G. In other
words, when G is a non-abelian group the maximal value of 7 is 5g/8 — 1 and
the central of G is of order g/4 while its commutator subgroup is of order 2.
The octic group is clearly the smallest group which satisfies these condi-
tions.

A necessary and sufficient condition that the non-abelian group G con-
tains a maximal number of sets of conjugate operators is that it contains
three abelian subgroups of index 2. If it contains two such subgroups it
also contains three such subgroups and its central is of index 4 under G
while its commutator subgroup is of order 2. The theorem that a non-
abelian group has three, one, or no abelian subgroups of index 2 is a special
case of the theorem that a non-abelian group of order ™ has p + 1, one, or
no abelian subgroup of index p, where p is a prime number. If a non-
abelian group of order p” contains more than one abelian subgroup of
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index p the number of its sets of conjugate operators is p™? + p™ ! —
£™® and hence the maximal value of # in this case is p™ *(p2 + p — 1) — 1.
This evidently reduces to 5g/8 — 1 when p = 2 as was noted above.

ON THE NUMBER OF SOLUTIONS OF CERTAIN NON-HOMO-
GENEOUS TRINOMIAL EQUATIONS IN A FINITE FIELD

By H. S. VANDIVER
DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF TEXAS
Communicated May 7, 1945
The relation

au™ + ™ + 1 =0, (1)

where a and b are given elements of a finite field F, with % and v to be de-
termined in F, with abuy £ 0, has been studied by Mitchell.! For the
special case where F consists of residue classes with respect to a prime
modulus, this equation has been studied by a number of writers.? All the
methods used by these writers appear to depend on a certain symmetry
arising from the fact that the exponents of # and v are the same.

However, in another paper® the writer obtained, based mainly on ex-
tensions of a method due to V. A. Lebesgue,¢ an expression for the number
of roots of equation (1) modulo p which was independent of this symmetry.
Hence, we shall apply this latter method to the consideration of

au* + b + wf =0 » (1a)
and
aw’ + b’ + 1 =0. (1)

We shall find expressions for the number of solutions (*, v, w*) of equation
(1a) and the number of solutions («%, v) of equation (15) in a finite field F,
providing that abuvw = 0. If we obtain this number, then we may
immediately find the rdumber of solutions (%, v, w). Also we may confine
ourselves to the case where ¢, f and g are divisors of p” — 1, where the order
of Fis p", when p is prime, as the other cases depend on this. :

Using Theorem IT of my previous paper,® we determine NN in the relation

N =X@1 — (a1 + bxs + )" 1), 2)

when the summation extends over x;, X2, X3, vyhere x; ranges independently
over all the distinct values such tl_1at =1, similarly x. over all roots of
x = 1, and x; over all roots of x/ = 1, where :



